Liphardt Lab

We're a biophysics lab. We investigate biological spatial organization on the mesoscale (10 nm - 10 microns) and the role of mechanical cues in cellular decision-making. Current research directions include studies of the mechanobiology of tumor progression, super-resolution imaging of protein clustering in membranes, and single-molecule measurements of transport through biological pores and channels.

We also invent and refine tools for precision control and characterization of cells and tissues. Control technologies include light-powered proton pumps, which allow us to optically manipulate the proton-motive-force (pmf) within living cells. Characterization technologies include super-resolution light microscopy. Our lab is located in the Shriram Center at Stanford University.

If you are lost, our GPS coordinates are 37.429001 (Lat), -122.175463 (Lon) and here is a direct link to us on Google maps. The closest place to park is Parking Structure 2.

Major Research Directions: Patterns, Energy, and Information

Single molecule studies of the Nuclear Pore Complex

In collaboration with Karsten Weis, we are using single-molecule tracking approaches to learn how the NPC controls access to the nucleus. The image shows a schematic of a NPC in the nuclear membrane, and a single cargo transiting the pore. The panel below shows a single cargo being tracked as it translocates the pore. The NPC is both highly selective and efficient; our goal is to understand how the pore implements those apparently conflicting goals. Moreover, we would like to clarify the fundamental basis for the pore's ability to efficiently rectify molecular transport.

Genome-wide coordination of gene expression

Imagine you are an orchestra conductor directing a symphony. If you're good at what you do, everything will sound right. How does the genome solve the equivalent problem, except without a conductor? We use genome-edited cell lines to investigate how DNA-looping and chromatin compaction influence transcriptional regulation. The image above shows a single nucleus. The DNA is blue, single RNA transcripts are red/yellow.

Mechanobiology of multicellular structures

How do multicellular structures interact with biological matrices such as collagen? We use mammary acini as our basic model system for these studies. Mammary acini are composed of about 100 cells and are a basic functional and anatomical unit of the human breast. We use mammary acini to explore how collections of cells generate mechanical cues and how these cues spread through gels, influencing the decisions of other cells and multicellular structures. The image above shows several hundred mammary acini (red dots) deposited on a collagen matrix (green).

Tools for control and measurement; polymers and forces

Rotating E. coli

Plasmon Rulers



DNA Loops

Tools and methods. Scroll over the images to learn more.